高考數(shù)學(xué)選擇題秒殺法 高考數(shù)學(xué)秒殺公式(5篇)

思而思學(xué)網(wǎng)

高考數(shù)學(xué)爆強(qiáng)秒殺公式與方法一

1,適用條件:[直線過(guò)焦點(diǎn)],必有ecosA=(x-1)/(x+1),其中A為直線與焦點(diǎn)所在軸夾角,是銳角。x為分離比,必須大于1。注上述公式適合一切圓錐曲線。如果焦點(diǎn)內(nèi)分(指的是焦點(diǎn)在所截線段上),用該公式;如果外分(焦點(diǎn)在所截線段延長(zhǎng)線上),右邊為(x+1)/(x-1),其他不變。

2,函數(shù)的周期性問(wèn)題(記憶三個(gè)):1、若f(x)=-f(x+k),則T=2k;

2、若f(x)=m/(x+k)(m不為0),則T=2k;3、若f(x)=f(x+k)+f(x-k),則T=6k。注意點(diǎn):a.周期函數(shù),周期必?zé)o限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。

3,關(guān)于對(duì)稱問(wèn)題(無(wú)數(shù)人搞不懂的問(wèn)題)總結(jié)如下:1,若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對(duì)稱軸為x=(a+b)/2;2、函數(shù)y=f(a+x)與y=f(b-x)的圖像關(guān)于x=(b-a)/2對(duì)稱;3、若f(a+x)+f(a-x)=2b,則f(x)圖像關(guān)于(a,b)中心對(duì)稱

4,函數(shù)奇偶性1、對(duì)于屬于R上的奇函數(shù)有f(0)=0;2、對(duì)于含參函數(shù),奇函數(shù)沒(méi)有偶次方項(xiàng),偶函數(shù)沒(méi)有奇次方項(xiàng)3,奇偶性作用不大,一般用于選擇填空

5,數(shù)列爆強(qiáng)定律:1,等差數(shù)列中:S奇=na中,例如S13=13a7(13和7為下角標(biāo));2等差數(shù)列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比數(shù)列中,上述2中各項(xiàng)在公比不為負(fù)一時(shí)成等比,在q=-1時(shí),未必成立4,等比數(shù)列爆強(qiáng)公式:S(n+m)=S(m)+q2mS(n)可以迅速求q

6,數(shù)列的終極利器,特征根方程。(如果看不懂就算了)。首先介紹公式:對(duì)于an+1=pan+q(n+1為下角標(biāo),n為下角標(biāo)),a1已知,那么特征根x=q/(1-p),則數(shù)列通項(xiàng)公式為an=(a1-x)p2(n-1)+x,這是一階特征根方程的運(yùn)用。二階有點(diǎn)麻煩,且不常用。所以不贅述。希望同學(xué)們牢記上述公式。當(dāng)然這種類型的數(shù)列可以構(gòu)造(兩邊同時(shí)加數(shù))

7,函數(shù)詳解補(bǔ)充:1、復(fù)合函數(shù)奇偶性:內(nèi)偶則偶,內(nèi)奇同外2,復(fù)合函數(shù)單調(diào)性:同增異減3,重點(diǎn)知識(shí)關(guān)于三次函數(shù):恐怕沒(méi)有多少人知道三次函數(shù)曲線其實(shí)是中心對(duì)稱圖形。它有一個(gè)對(duì)稱中心,求法為二階導(dǎo)后導(dǎo)數(shù)為0,根x即為中心橫坐標(biāo),縱坐標(biāo)可以用x帶入原函數(shù)界定。另外,必有唯一一條過(guò)該中心的直線與兩旁相切。

8,常用數(shù)列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2記憶方法:前面減去一個(gè)1,后面加一個(gè),再整體加一個(gè)2

9,適用于標(biāo)準(zhǔn)方程(焦點(diǎn)在x軸)爆強(qiáng)公式:k橢=-{(b2)xo}/{(a2)yo}k雙={(b2)xo}/{(a2)yo}k拋=p/yo注:(xo,yo)均為直線過(guò)圓錐曲線所截段的中點(diǎn)。

10,強(qiáng)烈推薦一個(gè)兩直線垂直或平行的必殺技:已知直線L1:a1x+b1y+c1=0直線L2:a2x+b2y+c2=0若它們垂直:(充要條件)a1a2+b1b2=0;若它們平行:(充要條件)a1b2=a2b1且a1c2≠a2c1[這個(gè)條件為了防止兩直線重合)注:以上兩公式避免了斜率是否存在的麻煩,直接必殺!

高考數(shù)學(xué)爆強(qiáng)秒殺公式與方法二

11,經(jīng)典中的經(jīng)典:相信鄰項(xiàng)相消大家都知道。下面看隔項(xiàng)相消:對(duì)于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+

1)-1/(n+2)]注:隔項(xiàng)相加保留四項(xiàng),即首兩項(xiàng),尾兩項(xiàng)。自己把式子寫在草稿紙上,那樣看起來(lái)會(huì)很清爽以及整潔!

12,爆強(qiáng)△面積公式:S=1/2?mq-np?其中向量AB=(m,n),向量BC

=(p,q)注:這個(gè)公式可以解決已知三角形三點(diǎn)坐標(biāo)求面積的問(wèn)題!

13,你知道嗎?空間立體幾何中:以下命題均錯(cuò):1,空間中不同三點(diǎn)確定一個(gè)平面;2,垂直同一直線的兩直線平行;3,兩組對(duì)邊分別相等的四邊形是平行四邊形;4,如果一條直線與平面內(nèi)無(wú)數(shù)條直線垂直,則直線垂直平面;5,有兩個(gè)面互相平行,其余各面都是平行四邊形的幾何體是棱柱;6,有一個(gè)面是多邊形,其余各面都是三角形的幾何體都是棱錐注:對(duì)初中生不適用。

14,一個(gè)小知識(shí)點(diǎn):所有棱長(zhǎng)均相等的棱錐可以是三、四、五棱錐。15,求f(x)=?x-1?+?x-2?+?x-3?+…+?x-n?(n為正整數(shù))的最小值。答案為:當(dāng)n為奇數(shù),最小值為(n2-1)/4,在x=(n+1)/2時(shí)取到;當(dāng)n為偶數(shù)時(shí),最小值為n2/4,在x=n/2或n/2+1時(shí)取到。

16,√〔(a2+b2)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b為正數(shù),是統(tǒng)一定義域)

17,橢圓中焦點(diǎn)三角形面積公式:S=b2tan(A/2)在雙曲線中:S=b2/tan(A/

2)說(shuō)明:適用于焦點(diǎn)在x軸,且標(biāo)準(zhǔn)的圓錐曲線。A為兩焦半徑夾角。

18,爆強(qiáng)定理:空間向量三公式解決所有題目:cosA=|{向量a.向量b}/[向量a的!料蛄縝的模]|一:A為線線夾角,二:A為線面夾角(但是公式中cos換成sin)三:A為面面夾角注:以上角范圍均為[0,派/2]。19,.爆強(qiáng)公式12+22+32+…+n2=1/6(n)(n+1)(2n+1);123+223+323+…+n23=1/4(n2)(n+1)2

20,爆強(qiáng)切線方程記憶方法:寫成對(duì)稱形式,換一個(gè)x,換一個(gè)y。舉例說(shuō)明:對(duì)于y2=2px可以寫成y×y=px+px再把(xo,yo)帶入其中一個(gè)得:y×yo=pxo+px

高考數(shù)學(xué)爆強(qiáng)秒殺公式與方法三

21,爆強(qiáng)定理:(a+b+c)2n的展開式[合并之后]的項(xiàng)數(shù)為:Cn+22,n+2在下,2在上

22,[轉(zhuǎn)化思想]切線長(zhǎng)l=√(d2-r2)d表示圓外一點(diǎn)到圓心得距離,r為圓半徑,而d最小為圓心到直線的距離。

23,對(duì)于y2=2px,過(guò)焦點(diǎn)的互相垂直的兩弦AB、CD,它們的和最小為8p。爆強(qiáng)定理的證明:對(duì)于y2=2px,設(shè)過(guò)焦點(diǎn)的弦傾斜角為A.那么弦長(zhǎng)可表示為2p/〔(sinA)2〕,所以與之垂直的弦長(zhǎng)為2p/[(cosA)2],所以求和再據(jù)三角知識(shí)可知。(題目的意思就是弦AB過(guò)焦點(diǎn),CD過(guò)焦點(diǎn),且AB垂直于CD)24,關(guān)于一個(gè)重要絕對(duì)值不等式的介紹爆強(qiáng):?|a|-|b|?≤?a±b?≤?a?+?b?

25,關(guān)于解決證明含ln的不等式的一種思路:爆強(qiáng):舉例說(shuō)明:證明1+1/2+1/3+…+1/n>ln(n+1)把左邊看成是1/n求和,右邊看成是Sn。解:令an=1/n,令Sn=ln(n+1),則bn=ln(n+1)-lnn,那么只需證an>bn即可,根據(jù)定積分知識(shí)畫出y=1/x的圖。an=1×1/n=矩形面積>曲線下面積=bn。當(dāng)然前面要證明1>ln2。注:僅供有能力的童鞋參考!!另外對(duì)于這種方法可以推廣,就是把左邊、右邊看成是數(shù)列求和,證面積大小即可。說(shuō)明:前提是含ln。

26,爆強(qiáng)簡(jiǎn)潔公式:向量a在向量b上的射影是:〔向量a×向量b的數(shù)量積〕/[向量b的模]。記憶方法:在哪投影除以哪個(gè)的模

27,說(shuō)明一個(gè)易錯(cuò)點(diǎn):若f(x+a)[a任意]為奇函數(shù),那么得到的結(jié)論是f(x+a)=-f(-x+a)〔等式右邊不是-f(-x-a)〕,同理如果f(x+a)為偶函數(shù),

可得f(x+a)=f(-x+a)牢記!

28,離心率爆強(qiáng)公式:e=sinA/(sinM+sinN)注:P為橢圓上一點(diǎn),其中A為角F1PF2,兩腰角為M,N

29,橢圓的參數(shù)方程也是一個(gè)很好的東西,它可以解決一些最值問(wèn)題。比如x2/4+y2=1求z=x+y的最值。解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!

30,[僅供有能力的童鞋參考]]爆強(qiáng)公式:和差化積sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]積化和差sinαsinβ=

[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2

高考數(shù)學(xué)爆強(qiáng)秒殺公式與方法四

31,爆強(qiáng)定理:直觀圖的面積是原圖的√2/4倍。

32,三角形垂心爆強(qiáng)定理:1,向量OH=向量OA+向量OB+向量OC(O為三角形外心,H為垂心)2,若三角形的三個(gè)頂點(diǎn)都在函數(shù)y=1/x的圖象上,則它的垂心也在這個(gè)函數(shù)圖象上。

33,維維安尼定理(不是很重要(僅供娛樂(lè))),--正三角形內(nèi)(或邊界上)任一點(diǎn)到三邊的距離之和為定值,這定值等于該三角形的高。

34,爆強(qiáng)思路:如果出現(xiàn)兩根之積x1x2=m,兩根之和x1+x2=n,我們應(yīng)當(dāng)形成一種思路,那就是返回去構(gòu)造一個(gè)二次函數(shù),再利用△大于等于0,可以得到m、n范圍。

35,常用結(jié)論:過(guò)(2p,0)的直線交拋物線y2=2px于A、B兩點(diǎn)。O為原點(diǎn),連接AO.BO。必有角AOB=90度

36,爆強(qiáng)公式:ln(x+1)≤x(x>-1)該式能有效解決不等式的證明問(wèn)題。舉例說(shuō)明:ln(1/(22)+1)+ln(1/(32)+1)+…+ln(1/(n2)+1)<1(n≥2)證明如下:令x=1/(n2),根據(jù)ln(x+1)≤x有左右累和右邊再放縮得:左和<1-1/n<1證畢!

37,函數(shù)y=(sinx)/x是偶函數(shù)。在(0,派)上它單調(diào)遞減,(-派,0)上單調(diào)遞增。利用上述性質(zhì)可以比較大小。

38,函數(shù)y=(lnx)/x在(0,e)上單調(diào)遞增,在(e,+無(wú)窮)上單調(diào)遞減。另外y=x2(1/x)與該函數(shù)的單調(diào)性一致。

39,幾個(gè)數(shù)學(xué)易錯(cuò)點(diǎn):1,f`(x)<0是函數(shù)在定義域內(nèi)單調(diào)遞減的充分不必要條件;2,在研究函數(shù)奇偶性時(shí),忽略最開始的也是最重要的一步:考慮定義域是否關(guān)于原點(diǎn)對(duì)稱!;3,不等式的運(yùn)用過(guò)程中,千萬(wàn)要考慮"="號(hào)是否取到!4,研究數(shù)列問(wèn)題不考慮分項(xiàng),就是說(shuō)有時(shí)第一項(xiàng)并不符合通項(xiàng)公式,所以應(yīng)當(dāng)極度注意:數(shù)列問(wèn)題一定要考慮是否需要分項(xiàng)!

40,提高計(jì)算能力五步曲:1,扔掉計(jì)算器;2,仔細(xì)審題(提倡看題慢,解題快),要知道沒(méi)有看清楚題目,你算多少都沒(méi)用!;3,熟記常用數(shù)據(jù),掌握一些速算技巧;4,加強(qiáng)心算,估算能力;5,[檢驗(yàn)]!。

高考數(shù)學(xué)爆強(qiáng)秒殺公式與方法五

41,一個(gè)美妙的公式…:爆強(qiáng)!已知三角形中AB=a,AC=b,O為三角形的外心,則向量AO×向量BC(即數(shù)量積)=(1/2)[b2-a2]強(qiáng)烈推薦!證明:過(guò)O作BC垂線,轉(zhuǎn)化到已知邊上

42,①函數(shù)單調(diào)性的含義:大多數(shù)同學(xué)都知道若函數(shù)在區(qū)間D上單調(diào),則函數(shù)

值隨著自變量的增大(減小)而增大(減小),但有些意思可能有些人還不是很清楚,若函數(shù)在D上單調(diào),則函數(shù)必連續(xù)(分段函數(shù)另當(dāng)別論)這也說(shuō)明了為什么不能說(shuō)y=tanx在定義域內(nèi)單調(diào)遞增,因?yàn)樗膱D像被無(wú)窮多條漸近線擋住,換而言之,不連續(xù).還有,如果函數(shù)在D上單調(diào),則函數(shù)在D上y與x一一對(duì)應(yīng).這個(gè)可以用來(lái)解一些方程.至于例子不舉了.②函數(shù)周期性:這里主要總結(jié)一些函數(shù)方程式所要表達(dá)的周期設(shè)f(x)為R上的函數(shù),對(duì)任意x∈R(1)f(a±x)=f(b±x)T=(b-a)(加絕對(duì)值,下同)(2)f(a±x)=-f(b±x)T=2(b-a)(3)f(x-a)+f(x+a)=f(x)T=6a(4)設(shè)T≠0,有f(x+T)=M[f(x)]其中M(x)滿足M[M(x)]=x,且M(x)≠x則函數(shù)的周期為2

43,③奇偶函數(shù)概念的推廣:(1)對(duì)于函數(shù)f(x),若存在常數(shù)a,使得f(a-x)=f(a+x),則稱f(x)為廣義(Ⅰ)型偶函數(shù),且當(dāng)有兩個(gè)相異實(shí)數(shù)a,b滿足時(shí),f(x)為周期函數(shù)T=2(b-a)(2)若f(a-x)=-f(a+x),則f(x)是廣義(Ⅰ)型奇函數(shù),當(dāng)有兩個(gè)相異實(shí)數(shù)a,b滿足時(shí),f(x)為周期函數(shù)T=2(b-a)

(3)有兩個(gè)實(shí)數(shù)a,b滿足廣義奇偶函數(shù)的方程式時(shí),就稱f(x)是廣義(Ⅱ)型的奇,偶函數(shù).且若f(x)是廣義(Ⅱ)型偶函數(shù),那么當(dāng)f在[a+b/2,∞)上為增函數(shù)時(shí),有f(x1)<f(x2)等價(jià)于絕對(duì)值x1-(a+b 2)<絕對(duì)值x2-(a+b)=""

44,④函數(shù)對(duì)稱性:(1)若f(x)滿足f(a+x)+f(b-x)=c則函數(shù)關(guān)于(a+b/2,c/2)成中心對(duì)稱(2)若f(x)滿足f(a+x)=f(b-x)則函數(shù)關(guān)于直線x=a+b/2成軸對(duì)稱⑤柯西函數(shù)方程:若f(x)連續(xù)或單調(diào)(1)若f(xy)=f(x)+f(y)(x>0,y>0),則f(x)=?ax(2)若f(xy)=f(x)f(y)(x>0,y>0),則f(x)=x2u(u由初值給出)(3)f(x+y)=f(x)f(y)則f(x)=a2x(4)若f(x+y)=f(x)+f(y)+kxy,則f(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),則f(x)=ax+b特別的若f(x)+f(y)=f(x+y),則f(x)=kx

45,與三角形有關(guān)的定理或結(jié)論中學(xué)數(shù)學(xué)平面幾何最基本的圖形就是三角形①正切定理(我自己取的,因?yàn)椴恢烂?:在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC②任意三角形射影定理(又稱第一余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA③任意三角形內(nèi)切圓半徑r=2S/a+b+c(S為面積),外接圓半徑應(yīng)該都知道了吧④梅涅勞斯定理:設(shè)A1,B1,C1分別是△ABC三邊BC,CA,AB所在直線的上的點(diǎn),則A1,B1,C1共線的充要條件是CB1/B1A?BA1/A1C?AC1/C1B=1

44,易錯(cuò)點(diǎn):1,函數(shù)的各類性質(zhì)綜合運(yùn)用不靈活,比如奇偶性與單調(diào)性常用來(lái)配合解決抽象函數(shù)不等式問(wèn)題;2,三角函數(shù)恒等變換不清楚,誘導(dǎo)公式不迅捷。

45,易錯(cuò)點(diǎn):3,忽略三角函數(shù)中的有界性,三角形中角度的限定,比如一個(gè)三角形中,不可能同時(shí)出現(xiàn)兩個(gè)角的正切值為負(fù);4,三角的平移變換不清晰,說(shuō)明:由y=sinx變成y=sinwx的步驟是將橫坐標(biāo)變成原來(lái)的1/?w?倍

46,易錯(cuò)點(diǎn):5,數(shù)列求和中,常常使用的錯(cuò)位相減總是粗心算錯(cuò),規(guī)避方法:在寫第二步時(shí),提出公差,括號(hào)內(nèi)等比數(shù)列求和,最后除掉系數(shù);6,數(shù)列中常用變形公式不清楚,如:an=1/[n(n+2)]的求和保留四項(xiàng)

47,易錯(cuò)點(diǎn):7,數(shù)列未考慮a1是否符合根據(jù)sn-sn-1求得的通項(xiàng)公式;8,數(shù)列并不是簡(jiǎn)單的全體實(shí)數(shù)函數(shù),即注意求導(dǎo)研究數(shù)列的最值問(wèn)題過(guò)程中是否取到問(wèn)題

48,易錯(cuò)點(diǎn):9,向量的運(yùn)算不完全等價(jià)于代數(shù)運(yùn)算;10,在求向量的模運(yùn)

算過(guò)程中平方之后,忘記開方。比如這種選擇題中常常出現(xiàn)2,√2的答案…,基本就是選√2,選2的就是因?yàn)闆](méi)有開方;11,復(fù)數(shù)的幾何意義不清晰

49,關(guān)于輔助角公式:asint+bcost=[√(a2+b2)]sin(t+m)其中tanm=b/a[條件:a>0]說(shuō)明:一些的同學(xué)習(xí)慣去考慮sinm或者cosm來(lái)確定m,個(gè)人覺(jué)得這樣太容易出錯(cuò)最好的方法是根據(jù)tanm確定m.(見上)。舉例說(shuō)明:sinx+√3cosx=2sin(x+m),因?yàn)閠anm=√3,所以m=60度,所以原式=2sin(x+60度)

50,A、B為橢圓x2/a2+y2/b2=1上任意兩點(diǎn)。若OA垂直O(jiān)B,則有1/?OA?2+1/?OB?2=1/a2+1/b2

[真題精析]例1:1×2×3+2×3X4+3×4×5+…+28×29×30=()

A.188690B.188790C.188890D.188990[答案]B[秒殺]每一項(xiàng)都是三個(gè)連續(xù)自然數(shù)的乘積,則結(jié)果一定能被3整除。分析選項(xiàng),只有B符合。

[真題精析]例l:某次測(cè)驗(yàn)有50道判斷題,每做對(duì)一題得3分,不做或做錯(cuò)一題倒扣1分,某學(xué)生共得82分,問(wèn)答對(duì)題數(shù)和答錯(cuò)題數(shù)(包括不做)相差多少?A.33B39C.17D.16[答案]D[秒殺]根據(jù)題意,答對(duì)的題目數(shù)十答錯(cuò)的題目數(shù)一總題目數(shù)50(偶數(shù)),故二者之差也應(yīng)是偶數(shù)。分析選項(xiàng),只有D符合。

[真題精析]例1:一個(gè)三位數(shù)除以9余7,除以5余2,除以4余3,這樣的三位數(shù)共有:A.5個(gè)B.6個(gè)C.7個(gè)D.8個(gè)[答案]A[秒殺]周期為4,5,9的最小公倍數(shù)9×5×4=180。由于1000÷180=5------100,而滿足條件的最小三位數(shù)一定大于100,故共有5個(gè)數(shù)字。[解析]運(yùn)用中國(guó)剩余定理,計(jì)算出最小的符合題意的數(shù)字為187,而4,5,6的最小公倍數(shù)為180,則187+180n<1000,有5個(gè)數(shù)字。

[真題精析]例1:A、B、C、D、E這5個(gè)小組開展撲克比賽,每?jī)蓚(gè)小組之間都要比賽一場(chǎng),到現(xiàn)在為止,A組已經(jīng)比賽了4場(chǎng),B組已經(jīng)比賽3場(chǎng),C組已經(jīng)比賽了2場(chǎng),D組已經(jīng)比賽了1場(chǎng)。問(wèn)E組比了幾場(chǎng)?A.0B.1

C.2D.3[答案]C[秒殺]將五位人的比賽關(guān)系用右圖表示,因此,選C。[解析]顯然A組與B、C、D、E都比賽了一場(chǎng),則D組只能和A組比賽了一場(chǎng),B組只能和A、C、E各比賽一場(chǎng),C組只能和A、B各比賽一場(chǎng),因此D組只和A、B各比賽一場(chǎng),答案為C。

熱門推薦

最新文章